POTENSI BAKTERI Bacillus subtilis DAN Pseudomonas fluorescens DALAM MENGINDUKSI KETAHANAN TANAMAN TOMAT TERHADAP PENYAKIT LAYU FUSARIUM
THE POTENTIAL OF Bacillus subtilis AND Pseudomonas fluorescens BACTERIA IN INDUCTING THE RESISTANCE OF TOMATO PLANTS AGAINST FUSARIUM WILT DISEASE
DOI:
https://doi.org/10.21776/ub.jurnalhpt.2024.012.2.5Keywords:
Fenol, Fusarium oxysporum, PAL, PGPR, TomatAbstract
Tanaman tomat merupakan salah satu jenis tanaman hortikultura yang banyak digemari oleh masyarakat Indonesia. Buah tomat banyak digunakan sebagai bahan bumbu masakan. Akan tetapi, terdapat faktor pembatas dalam produksi buah tomat, yakni adanya penyakit layu fusarium yang disebabkan oleh patogen Fusarium oxysporum. Pengendalian hayati menggunakan bakteri Plant Growth Promoting Rhizobacteria (PGPR) seperti Bacillus subtilis dan Pseudomonas fluorescens dapat menjadi solusi pengendalian yang aman. Penelitian ini bertujuan untuk mengetahui pengaruh pemberian bakteri PGPR dalam meningkatkan pertumbuhan dan meningkatkan ketahanan tanaman melalui mekanisme induksi ketahanan. Berdasarkan hasil penelitian aplikasi bakteri B. subtilis dan P. fluorescens memiliki kemampuan dalam melarutkan fosfat, serta meningkatkan pertumbuhan tanaman tomat meliputi tinggi tanaman dan jumlah daun yang lebih baik dibandingkan kontrol. Aplikasi bakteri baik secara tunggal maupun konsorsium juga dapat menghambat kejadian penyakit layu fusarium dengan nilai insidensi kejadian terendah pada aplikasi bakteri konsorsium yaitu 27.50%. Akan tetapi aplikasi kedua bakteri tersebut tidak menunjukkan pengaruh yang nyata dalam meningkatkan indikator dari ketahanan induksi, yakni kandungan total fenolik dan aktivitas enzim Phenylalanine Ammonia Lyase (PAL).
References
Akram , W., Mahboob, A., & Javed, A. A. (2013). Bacillus thuringiensis strain 199 can induced systemic resistance in tomato against fusarium wilt. European Journal of Microbiology and Immunology, 3(4), 275-280. https://doi.org/10.1556%2FEuJMI.3.2013.4.7
Balasubramanian, V., Vashisht, D., Cletus, J., & Sakthivel, N. (2012). Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett, 34(11), 1983–1990. https://doi.org/10.1007/s10529-012-1012-6
Confortin, T.C., Spannemberg, S.S., Todero, I., Luft, L., Brun, T., Alves, E.A., Kuhn, R.C., & Mazutti, M.A. (2019). Microbial enzymes as control agents of diseases and pests in organic agriculture, in: new and future developments in microbial biotechnology and bioengineering. In V.K. Gupta & A. Pandey (Eds.), New and future developments in microbial biotechnology and bioengineering: microbial secondary metabolites biochemistry and applications (321–332 pp.). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-63504-4.00021-9
Dadáková, K., Heinrichová, T., Lochman, J., & Kašparovský, T. (2020). Production of defense phenolics in tomato leaves of different age. Molecules, 25(21), 4952. https://doi.org/10.3390/molecules25214952
Dewi, R. R., Rahmah, S. M., Taruna, A. T., Aini, L. Q., Fernando, I., Abadi, A. L., & Syib’li, M. A. (2023). The effectiveness comparison between application of indigenous arbuscular mycorrhizal fungal community and Stenotrophomonas maltophilia to suppress fusarium wilt incidence on local garlic plant (lumbu hijau). AGRIVITA Journal of Agricultural Science, 45(1), 131-146. http://doi.org/10.17503/agrivita.v45i1.3970
Fitriani, M. L., Wiyono, S., & Sinaga, M. S. (2019). Potensi kolonisasi mikoriza arbuskular dan cendawan endofit untuk pengendalian layu fusarium pada bawang merah. Jurnal Fitopatologi Indonesia, 15(6), 228-238. https://doi.org/10.14692/jfi.15.6.228-238
García-Villaraco, A., Boukerma, L., Lucas, J. A., Gutierrez-Mañero, F. J., & Ramos-Solano, B. (2021). Tomato bio-protection induced by Pseudomonas fluorescens n21.4 involves ros scavenging enzymes and prs, without compromising plant growth. Plants, 10(2), 331. https://doi.org/10.3390/plants10020331
Guo, Y., Lv, J., Zhao, Q., Dong, Y., & Dong, K. (2020). Cinnamic acid increased the incidence of fusarium wilt by increasing the pathogenicity of Fusarium oxysporum and reducing the physiological and biochemical resistance of faba bean, which was alleviated by intercropping with wheat. Front. Plant Sci., 11, 608389. https://doi.org/10.3389/fpls.2020.608389
Hashem, A., Tabassum. B., & Abd_Allah, E. F. (2019). Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004
Kalay, A. M., Talahaturuson, A., & Rumahlewang, W. (2018). Antagonisme Trichoderma harzianum dan Azotobacter terhadap Rhizoctonia solani, Sclerotium rolfsii, dan Fusarium oxysporum secara in vitro. Jurnal Agrologia, 7(2), 71-78. http://dx.doi.org/10.30598/a.v7i2.764
Kementerian Pertanian Republik Indonesia. (2013). Metode standar pengujian efikasi fungisida. Jakarta: Direktorat Jenderal Prasarana dan Sarana Pertanian.
Kementerian Pertanian Republik Indonesia. (2017). Outlook tanaman pangan dan hortikultura. Jakarta: Pusat Data Sistem Informasi Pertanian Kementerian Pertanian.
Khaeruni, A., Wahab, A., Taufik, M., & Sutariati, G. A. K. (2013). Keefektifan waktu aplikasi formulasi rizobakteri indigenus untuk mengendalikan layu fusarium dan meningkatkan hasil tanaman tomat di tanah ultisol. Jurnal Hortikultura, 23(4), 365-371.
Li, C., Yang, J., Li, W., Sun, J., & Peng, M. (2017). Direct root penetration and rhizome vascular colonization by Fusarium oxysporum f. sp. cubense are the key steps in the successful infection of brazil cavendish. Plant Disease, 101, 2073–2078. https://doi.org/10.1094/PDIS-04-17-0467-RE
Li, Z.F., He, C. L., Wang, Y., Li, M. J., Dai, Y. J., Wang, T., & Lin, W. (2016). Enhancement of trichothecene mycotoxins of Fusarium oxysporum by ferulic acid aggravates oxidative damage in Rehmannia glutinosa Libosch. Sci. Rep., 6, 33962. https://doi.org/10.1038/srep33962
Lv, H., Cao, H., Nawaz, M. A., Sohail, H., Huang, Y., Cheng, F., Kong, Q., & Bie, Z. (2018). Wheat intercropping enhances the resistance of watermelon to fusarium wilt. Front. Plant Sci., 9, 696. https://doi.org/10.3389/fpls.2018.00696
Mariutto, M., Duby, F., Adam, A., Bureau, C., Fauconnier, M. L., Ongena, M., Thonart, P., & Dommes, J. (2011). The elicitation of a systemic resistance by Pseudomonas putidabtp1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC Plant Biol, 11, 29. https://doi.org/10.1186/1471-2229-11-29
Mohamed, H.I., & Gomaa, E. Z. (2012). Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under nacl stress. Photosynt., 50, 263–272. https://doi.org/10.1007/s11099-012-0032-8
Niu, B., Wang, W., Yuan, Z., Sederoff, R. R., Sederoff, H., Chiang, V. L., & Borriss, R. (2020). Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Front. Microbiol., 11, 585404. https://doi.org/10.3389/fmicb.2020.585404
Oksana, Irfan, M., Fianiray, A. R., & Zam, S. I. (2020). Isolasi dan identifikasi bakteri pelarut fosfat pada tanah ultisol di Kecamatan Rumbai Pekan Baru. Agrotechnolgy Research Journal, 4(1), 22-25. https://doi.org/10.20961/agrotechresj.v4i1.36063
Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J.L. & Thonart, P. (2007). Surfactin and fengcyn lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9(4), 1084-1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x
Pieterse, C. M. J., Zamioudis, C., Brendsen, R. L., Weller, D. M., Van Wees, S. C. M., & Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52(1), 347-375. https://doi.org/10.1146/annurev-phyto-082712-102340
Prihatna, C., Barbetti, M. J., & Barker, S. J. (2018). A novel tomato fusarium wilt tolerance gene. Front. Microbiol., 9, 1226. https://doi.org/10.3389/fmicb.2018.01226
Ram, R. M., Debnath, A., Negi, S., & Singh, H.B. (2022). Use of microbial consortia for broad spectrum protection of plant pathogens: regulatory hurdles, present status and future prospects. Biopesticides. https://doi.org/10.1016/B978-0-12-818732-6.00025-3
Rezende, W. P., Borges, L. L., Santos, D. L., Alves, N. M., & Paula, J. R. (2015). Effect of environmental factors on phenolic compounds in leaves of Syzygium jambos (L.) Alston (Myrtaceae). Modern Chemistry and Applications, 3(2), 1000157. https://doi.org/10.4172/2329-6798.1000157
Saberi-Riseh, R. S., Fathi, F., & Moradzadeh-Eskandari, M. (2020). Effect of some Pseudomonas fluorescens and Bacillus subtilis strains on osmolytes and antioxidants of cucumber under salinity stress. Journal Crop Protection, 9(1): 1-16.
Santos, R. M. D., Diaz, P. A.E., Lobo, L. L. B., & Rigobelo, E. C. (2020). Use of plant growth-promoting rhizobacteria and sugarcane: characteristics and application. Frontiers Sustainable Food Systems, 4(136). https://doi.org/10.3389/fsufs.2020.00136
Setiawati, M. R., Suryatmana, P., Hindersah, R., Fitriatin, B. N., & Herdiyantoro, D. (2014). Karakterisasi isolat bakteri pelarut fosfat untuk meningkatkan ketersedian p pada media kultur cair tanaman jagung (Zea mays L.). Jurnal Ilmu-ilmu Hayati dan Fisik, 16(1), 30-34.
Silaban, I. C., Aini, L. Q., & Syibli, M. A. (2015). Pengujian konsorsium mikroba antagonis untuk mengendalikan jamur Sclerotium rolfsii penyebab penyakit rebah semai pada kedelai (Glycine max L.). Jurnal Hama Penyakit Tumbuhan, 3(2), 100-107.
Sugianto, S. K., Shovitri, M., & Hidayat. (2018). Potensi rhizobakteri sebagai pelarut fosfat. Jurnal Sains dan Seni ITS, 7(2), 71–74. https://doi.org/10.12962/j23373520.v7i2.37241
Taruna, A., Khairunnisa', A., Dewi, R. R., Hadiwijoyo, E., Yulianah, I., Syib'li, M. A., & Abadi, A. L. (2023). Molecular docking and in vitro study revealed the inhibition mechanism of cutinase of Fusarium oxsyporum f.sp lycopersici by natural compounds of local turmeric in Indonesia. AGRIVITA Journal of Agricultural Science, 45(3), 554–569. http://doi.org/10.17503/agrivita.v45i3.3966
Wartono, Giyanto, & Mutaqin, K. H. (2015). Efektifitas formulasi spora Bacillus subtilis b12 sebagai agen pengendali hayati penyakit hawar daun bakteri pada tanaman padi. Jurnal Penelitian Pertanian Tanaman Pangan, 34(1), 21-28.
Widiantini, F., Pitaloka, D. J., Nasahi, C., & Yulia, E. (2017). Perkecambahan Peronosclorospora spp. asal beberapa daerah di Jawa Barat pada fungisida berbahan aktif metalaksil, dimetomorf dan fenamidon. Jurnal Agrikultura, 28(2), 95-102. https://doi.org/10.24198/agrikultura.v28i2.15753
Zhou, C., Zhu, J., Qian, N., Guo, J., & Yan, C. (2021). Bacillus subtilis sl18r induces tomato resistance against Botrytis cinerea, involving activation of long non-coding rna, mstrg18363, to decoy mir1918. Front. Plant Sci., 11, 634819. https://doi.org/10.3389/fpls.2020.634819
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal HPT (Hama Penyakit Tumbuhan)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The copyright of the received article shall be assigned to the journal as the publisher of the journal. The intended copyright includes the right to publish the article in various forms (including reprints). The journal maintains the publishing rights to the published articles.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.